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Abstract 

This series of papers is devoted to the development 
of the theory of X-ray diffuse scattering observed by 
the mono-Laue method in some ionic crystals. The 
ultimate cause of such diffuse scattering is revealed. 
It does not depend upon disordering, impurities, 
structural defects and the like, but inevitably exists 
in ideal crystals owing to the immanent loose packing 
of the crystal structure itself. The cause is rather 
general and such diffuse scattering should take place 
in many classes of crystals. This paper develops the 
necessary mathematical scheme for simple physical 
models and in the following papers the theory is 
applied to concrete ionic crystals with wide discussion 
of up-to-date experimental data. 

Introduction 

Considering hereafter both Bragg and diffuse scatter- 
ing we shall keep in mind X-ray scattering (although 
much is also valid for neutron scattering). While 
Bragg scattering does not need any explanation as it 
is well known and understood unambiguously the 
notion 'diffuse scattering' (DS) is not so well under- 
stood. Various authors using such a notion imply 
different experimental phenomena. It is obvious that 
in a wide sense any non-Bragg scattering should be 
called diffuse (or anomalous) scattering. At present, 
hundreds of papers are published on various types 
of diffuse scattering in different materials. In any 
event all of these papers deal with intensities IDS, of 
scattered particles which are rather weak in com- 
parison with the intensities of the Bragg reflections, 
IBr, whereas the distribution of any IDS(~) in 
reciprocal space (relspace) differs markedly from that 
of IBr(~t) (~ is the scattering vector with components 
hkl). Among the causes of the appearance of DS the 
following are usually considered: (a) thermal chaotic 
motion of atoms, (b) chemical disordering in an alloy 
or in a compound, (c) chemical inhomogeneity in an 
alloy and inhomogeneity of lattice constants induced 
by it, (d) random structural distortions of the lattice, 
(e) random distribution and orientation of various 
defects in the crystal, (f)  crystal ageing with forma- 
tion of different phases, etc. In general, one may 
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conclude that DS occurs as a result of various types 
of imperfections. 

At present most papers on DS are concerned with 
alloys where DS is caused, for example, by the con- 
centrational decomposition of the initially 
homogeneous solid solution and the precipitation of 
a new phase in submicroscopic regions. For this rea- 
son the notion DS is often used with just this narrow 
meaning. It should be pointed out that we shall not 
consider the diffuse scattering induced by imperfec- 
tions at all, but the diffuse scattering under our con- 
sideration and the cause of its appearance are to be 
universal for any crystal. 

DS should be subdivided into two types: (1) a more 
or less homogeneous type continuously distributed 
in relspace (diffuse background); (2) a sharply 
inhomogeneous type displaying a specific sym- 
metrical pattern of curves or points. Henceforth we 
shall deal mainly with the inhomogeneous type and 
later on we shall see that such scattering has to occur 
in the completely ideal crystal. The loose packing of 
almost all real crystals appears to be the universal 
microscopical cause of the inhomogeneous diffuse scat- 
tering under consideration. The atoms or ions forming 
the crystal structure are not completely fixed in their 
positions but posses either one, two or three degrees 
of freedom. The vibrational phonon modes corre- 
sponding to these degrees of freedom create the more 
or less symmetrical pattern of DS which will be 
investigated together with its temperature evolution. 

The study of such DS is not considered as the main 
goal, but as a sensitive method for the extraction .,f 
information on the crystal structure and its tem- 
perature behaviour. From the physical point of view 
the cause of  such DS, namely, the intrinsic immanent 
chaotization of  the crystal structure of highly sym- 
metrical ideal crystals, and its microscopical mechanism 
are the main interest. 

In this connection the observation of DS in the 
so-called mono-Laue (or fixed-beam-fixed-crystal) 
experiment appears to be the most informative source. 
Strictly speaking it is the X-ray diffraction experiment 
performed on a fixed single crystal, with the use of 
the monochromatic focused beam described, for 
example, in the review by Dornier & Comes (1977). 
In the whole history of the diffraction technique rather 
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few such experiments have been carded out. The first 
experiments with this method apparently belong to 
Laval (1939, 1941) on a KC1 single crystal, to Preston 
(1942) on KC1, and to Harada & Honjo (1967) on 
BaTiO3. Later on we shall try to analyse most of the 
experimental data on DS in the mono-Laue method. 
Among them a very special place belongs to the paper 
by Comes, Lambert & Guinier (1970) on KNbO3 and 
one of our papers will be devoted especially to this 
crystal. We shall analyse the immanent chaotization 
in all perovskites studied, in binary compounds and 
in monoatomic crystals. 

Comes, Lambert & Guinier (1970) proposed a 
model of rigid atomic chains moving relative to one 
another and a very clear explanation of the DS 
observed in KNbO3 and BaTiO3 has been made by 
them, but no theoretical studies in this direction have 
so far been performed and therefore the detailed 
elaboration of  the mathematical description of  such 
immanent chaotization in crystals and the resulting DS 
turned out to be our main task. 

Such chaotization and its temperature evolution 
are often capable of leading to structural phase transi- 
tions (as, for example, in KNbO3) and in our papers 
the ability or inability of a crystal to undergo such 
transitions or even a cascade of transitions, the tem- 
perature dependence of DS and the features of the 
phase transitions will be studied in detail. 

Finally, it should be remarked that although the 
special vibrational phonon modes frozen below the 
corresponding phase transition appear to be respon- 
sible for the phase transition and DS the main features 
of the whole phenomenon are revealed in the elastic 
scattering and therefore we shall deal only with the 
elastic scattering. 

The results obtained by us make up a series of five 
papers. Let us briefly survey their contents. Paper I 
is devoted to the development of a special mathemati- 
cal description of immanent chaotization and diffuse 
scattering, their temperature evolution and the con- 
sequent structural phase transitions. 

In paper II the main attention is paid to the micro- 
scopical nature of chaotization, namely, to the quanti- 
tative description of the loose packing of different 
structures and their ability to chaotize and to the 
phase transitions. 

Papers III and IV are concerned with the most 
striking examples of cubic perovskites of KNbO3 and 
KMnF3 types and the method of their description 
possesses, in fact, far wider applicability. 

Paper V deals with binary systems and with the 
very interesting and important question of immanent 
chaotization of a second kind. 

In the future for an adequate and balanced 
development of the theory it will be necessary to 
consider all the other crystals with experimentally 
observed DS in the mono-Laue method [LiNbO3 
(Zhdanov, Ivanov, Kolontsova & Korneev, 1978), 

NaNO2 (Canut & Hosemann, 1964), and NaNbO3 
(Denoyer, Comes & Lambert, 1971; Ishida & Honjo, 
1972) are of main interest] and then to expand the 
theory to metals and alloys. 

I. Chaotization of a one-dimensional crystal. 
Ising model 

To show just the possibility for the appearance of DS 
in the ideal crystal and to develop gradually the 
mathematical scheme it is convenient to begin with 
the simplest tasks, complicating them one by one. 
The problem of scattering for a one-dimensional 
monoatomic crystal (linear chain) may serve as the 
first task. It should be reiterated that only elastic 
scattering will be calculated and only the diffuse 
scattering revealed in the mono-Laue experiment is 
to be considered. 

Linear chain without chaotization 

As is known, the linear chain with translation a 
(Fig. 1 a) under irradiation produces the set of Bragg 
peaks* in the relpoints x = (2zr/a)m. We shall first 
show how this result is obtained for a finite chain 
and we shall then extend the number of atoms N to 
infinity. 

The elastic-scattering amplitude for such a chain 
of N atoms is as follows (the atomic form factor f is 

* We assume that atoms occupy just the equilibrium positions, 
i.e. we do not take into account the usual thermal vibrations of 
atoms in a single-well potential. As is well known, such thermal 
motion leads to diffuse background and to the reduction of the 
Bragg peaks described by the Debye-Waller factor. 

(a) --o O, " ~  O-- 

"A O+A_ O-- (b) --o 

-A 0÷~ O--- 
(c) - - - o  t - . .£~i~ 

(d) ------O Ctcu2_jc ~ - ~  

(e) ---o ~ r ~  0 f O---- 
~l.A.I v 

Fig. 1. Various possible examples of chaotization of a linear chain 
[(a) is the ideal chain without chaotization]. 
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the same for all atoms, and is omitted here): 

F(x)  = exp [ -  ix0] + exp [ - i x a ]  + exp [ - i x 2 a ]  + . . .  

+exp [ - i ~ t ( N - 1 ) a ]  (1) 

and the scattering intensity (per atom) is 

I(~t) = F(x)F*(x). (2) 

Using (1), (2) and the formula of geometric pro- 
gression one obtains the known result: 

1 s in2[x(Na/2)]  
I (x)  = ~  sin2 [~(a /2) ]  , (3) 

which is called the Laue function. 
Only at N ~ oo does the Laue function transfer to 

the set of 8 functions in the relpoints x = (27r/a)m, 
while at finite values of N the Bragg peaks possess 
finite width and height. The Laue function, its gradual 
transformation into the set of 8 functions and the 
dependence upon N (or length of a chain) are 
described in detail by Guinier (1956). Henceforth we 
shall write down all the results in the limit N -  oo, 
and the Bragg scattering with ;~ functions and the DS 
without 8 functions will be written keeping in mind 
the Laue function. 

Linear chain with dichotomic chaotization without inter- 
action. Ising operators 

Now let the potential well for any atom n of a 
chain not have a minimum at point na but have two 
equal narrow minima (infinitely narrow) in two sym- 
metrical positions na + A ( A  < a/2),  see Fig. l (b) .  In 
such a problem of symmetrical double-well potentials 
the occupation probabilities at the fight and left posi- 
tions are equal to one-half. It should be noted that 
the chain possesses the same translational symmetry 
as a chain without chaotization (Fig. l a ) ,  i.e. once 
again the ideal crystal is considered. 

Now let the fight and left positions be occupied 
quite randomly. Then for a chain of N atoms we 
obtain 2 N configurations, the statistical weights of 
which are the same and equal to 1/2 N. 

Let us now introduce Ising operators o-/1 on each 
atom with eigenvalues + 1 and -1 .  Then any displace- 
ment of any atom n relative to its equilibrium position 
na may be written as Ao-/1. With the assumption that 
the time of interaction of a single quantum X with 
the system is far less than the time of atom displace- 
ment the scattering intensity may be written as the 
sum of separate scattering acts on the ensemble of 
all atomic configurations. 

I ( x ) -  1 ~ ~-' ,exp{-ix[(na+Ao./1) 
N2N  o-~ .... N /1/1' 

- ( n ' a +  Ao..,)]}. 

Henceforth we shall use a simple contrivance: 

Z ( . . . )= Z (...)(1-a/1/1,)-t-Z (...)8/1/1,. (4) 
/1/'1' /1/1' /1/1' 

Then in the first term of (4) n and n' are different 
and o./1 and o./1, are independent,  while in the second 
term the o.'s are completely absent, and the exponent 
is equal to zero. For the scattering intensity one 
obtains: 

I (x)  = ~ N "  e x p [ - i x ( n a - n ' a ) ]  

x ~ exp[-ixa(o./1-o..,)](l-8/1/1,) 
Or! -"  O-N 

+ ~ N1. (5) 
o-1 . . .o '~/  g 

Then, using the simple relations: 

and 

Z 
o" 1 ... o-h/' 

exp [-i~Ao-/1] = exp [-i~tA] + exp [i~tA] 
o" n 

= 2 cos (xA), 

Y'. exp [ ixAo./1,] = exp [ i~¢A ] + exp [ -  ixA ] 
or..  

= 2 cos (xA), 

Y. 1 = 2  N, 
o ' i  . . -o 'h/  

(6) 

exp [-ixA(o./1 - o..,)] 

= Y. exp[- ixA(o. /1-o . . , ) ]  Y." 1 
o-no-n"  O-! - "  O- N 

= 22 COS 2 (~tA) X 2 N-2, (7) 

where Y." denotes the sum over all operators except 
o./1 and o./1,, one obtains: 

_1__ ~ 8/1/1, cos 2 (xA) + 1 
N n / i t  

x (1 - 8/1/1,) cos 2 ( x A ) +  1. (8) 

Making use of the usual relation:* 

l ~ e x p [ - i ~ a ( n - n ' ) ] = ~ - ' . 8 ( 1 ) ( ~ - b ) ,  (9) 
b 

where b = (2"rr/a)m are the vectors of the reciprocal 
lattice for a one-dimensional chain (m integers), one 

* We use the notation 8°)(x)= (2zt/a)8(x) where 8(x) is the 
usual Dirac function. 
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may write: 

I (g )  = cos2 gza ~ 8 r e ( g - b )  +sin2 gA. (10) 
b 

In the very simple model of dichotomic chaotiz- 
ation in a linear chain for the first time we have 
obtained the intensity of the elastic scattering as a 
sum of two terms: the first one in (10) contains the 
8 function and describes Bragg reflections modulated 
by the factor cos 2 gA which will be called henceforth 
the Bragg-reducing factor; the second term in (10), 
sin 2 gA, does not contain the 8 function and describes 
the diffuse scattering gradually varying in relspace. 
Henceforth sin 2 gA will be called the typical DSfactor. 
In the limiting case zl = 0 one returns to the ideal 
crystal without chaotization in which DS is absent 
and there is only the system of equal Bragg peaks.* 
Fig. 2(a) illustrates the resulting intensity (10). The 
modulation wavelength depends upon A and at small 
values of A (za < a )  DS gradually varies over the 
relspace as a weak inhomogeneous background. Two 
particular cases should be noted here: A = a/2 and 
A = a/4 (see Fig. 2b and c). 

Chaotization of linear chain with interaction 

Let us consider a linear chain with the double-well 
potential shown in Fig. 1 (b). The correlation ('inter- 
action') of the atomic displacements (+A and - A )  
of the neighbouring atoms can be described by the 
different probabilities of different configurations: 

exp [-fl~(o"1, o'2, • • •, trN) ], 

where the Hamiltonian of the simplest conceivable 
model may be chosen as the Ising Hamiltonian with 
nearest neighbour 'exchange interaction' V: 

~ ' - -  -- V E Ao 'KAo'K+I"  (11) 
K 

Using the usual notation J'= (V/KT)A 2 one obtains 
for the scattering intensity of a linear chain with 
correlated chaotization: 

I (g)  -" --~,,,,,exp[-ixa(n-n')] 

x~-' exp [-igz~ (o-,, - o-,,,)] 
fo-/ 

x exp [ J ' ( . . .  + o',,_1 o',, + o,,o,,+ 1 + . . . ) ] }  

}-' 
x exp [ J ' ( . . .  + o-,,_lo-,, + o-,o-,+1 + . . . ) ]  . 

(12) 

*The usual decrease of Bragg peaks in relspace is absent here 
for the usual angular decrease of the X-ray form factor f (x)  has 
no~ been taken into account. 

Mean-field approximation 
This approximation involves the simplification of 

the Ising Hamiltonian in the following way: 

--- -- V A2  ~ O'KO'K + 1 "4 - - z V A 2 ( o  -) ~ O-K, (13) 
K K 

where z = 2 is the number of nearest neighbours, and 
(o-)A is the average thermodynamical value of the 
atomic displacement from the equilibrium position. 
For the sake of simplicity henceforth the notation 
J -  zJ' will be used. 

To calculate the scattering intensity (12) we make 
use of relation (4). Now, in the sum ~, , ,  (1 - ~Snn') • • • 
the operators o'n and on, are independent and we may 
take the sums )-'.~,,. and )-',~,, separately: 

Y~ = exp [-igzatrn] exp [J(tr)tr,] 
or n 

= 2 cosh ( J (o ' ) -  igza) (14) 

~', exp [ixzlo-,,,] exp [J(o-)o-,,] = 2 cosh (J(o-) + igzl). 
or n , 

All the remaining N -  2 factors from ~ will cancel 
each other in the numerator and denominator of (12) 
and one obtains: 

I (x)  = {22 cosh (J(o-) -  igzl) cosh (J(o-) + igza) 

x [1, ,E exp [-ixa(n - n')] 

- l  ~-'~,exp [ - iga(n-  n')]8~,,] 

1 ~___~2 2 cosh (./(o'))}[2 2 cosh (J(o'))]- ' .  

After simple calculations one obtains the resulting 
expression for the scattering intensity in the mean- 

(a) 

, ,:  ',,j ',,j, 
(b) 

(e) 

Fig. 2. Modulated Bragg and diffuse-scattering intensities. (a) 
z~ • o., ( b ) B  = a / 2 ,  (c)  zl = a / 4 .  
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field approximation: 

I (~)  = { 1 - s i n  2 (~A)[ 1 - t a n h  2 (J(o-))]} 

x E 8 ( ~ -  b) +sin2 (~A){1 - t a n h  2 [J(tr)]}. 
b 

(15) 

The limiting case J = 0 gives the previous result (10). 
The interaction J has complicated the result (10) 

by a factor 1 - t a n h  2 (J(tr)). In such a way for the first 
time in the theory there appears the temperature 
dependence of the diffuse scattering. 

For the final calculation of I (~)  by formula (15) 
one should know the (or) values which are easily 
obtained from the usual mean-field equation: 

(cr) = tanh J(~).  (16) 

It should be noted that the one-dimensional system 
differs from the two- or three-dimensional ones for 
although in the mean-field approximation there exists 
a transition temperature Tc at which the non-zero 
solution Co') ~ 0 of equation (16) appears nevertheless 
the exact solution of the one-dimensional problem 
does not give any Tc (absence of phase transition). 
Therefore expression (15) is not valid in the one- 
dimensional case, but our task has been to show for 
a very simple example the mathematical scheme of 
the intensity calculation in the mean-field approxima- 
tion. Later on the intensity calculation in the real 
three-dimensional crystal and for more complicated 
problems will be carried out similarly but is far more 
cumbersome. 

At a fixed value of n the variable n' covers a series 
of N values: 

n , n + l , n + 2 , . . . , N ,  1 , 2 , . . . , n - 1 .  

One should calculate X.., for all these values one by 
one; the first two steps are peculiar and all the rest 
are similar to each other. One should take the sums 
over o',, o ' ,+1 , . . . ,  then expand the hyperbolic cosines 
obtained with combined arguments into the terms 
with sines and cosines with simple arguments of 
sinh Jo'K and cosh J o r  types. The successive sum- 
ming over all {o-} raises the powers of sinh J and 
cosh J. During such a procedure one can easily see 
the natural regularities. At the end of the calculation 
one should take the limit N ~ oo, put sinh N J = 0 and 
obtain: 

I (x)  = cos 2 xA y. 8 ( x - b )  + sin 2 xA 
b 

x [(1 - t a n h  2 J ) / ( 1 - 2  tanh J cos xa  

+ tanh 2 J)] ,  (18) 

the exact solution for the scattering intensity. 
In the limiting case of correlation absence ( J -  0) 

one returns again to formula (10). When J # 0  
expression (18) describes two quite different cases 
depending upon the sign of J (or the sign of the 
'exchange interaction' V where J=VAE/KT - 
To/T). 

Let us consider the temperature-dependent factor 
in (18): 

The exact solution of linear-chain chaotization 
For a correct description of the linear-chain 

chaotization one should find the exact solution. Let 
us return to expression (12). To help the calculations 
one may use the usual Born-Karman boundary condi- 
tions: the ( N +  1)th atom is identified with the first 
one and hence trN+l = oh. One may make use of the 
well known result for the partition function of a 
one-dimensional chain under such cyclic conditions, 
which is 2 N (cosh N J + sinh N J). 

The whole calculation treatment of the exact sol- 
ution is very cumbersome and there is no need to 
give it at length. We shall confine ourselves only to 
a sketch. 

First of all one should calculate the sum X,,,  in 
the numerator of (12) 

X,,.,= Y. exp [ixA(tr,,--tr.,)] exp [J ~k trktrk+l ] 
{,.} 

= Y. e x p  [ - i x A  (o- .  - o-. ,)]  
or I ...orn...or N 

x e x p  [ J ( t r l  o" 2 + 0"20" 3 ÷ . . .  ÷ O ' n _ l O "  n ÷ OrnO'n+ 1 

+ . . . +  o-~,)].  (17) 

L(T, x) = (1 - t a n h  2 J ) / ( 1 - 2  tanh J cos xa  

+ tanh  2 J). (19) 

Fig. 3(a) shows L(x) at different temperatures when 
V is positive. One can see in Fig. 3(a) that owing to 
L at high temperatures the DS [second term in (18)] 
is more or less uniform and diffuse peaks are growing 
at the points of the Bragg reflections [~ = (27r/a)m]. 
At T =  0 only such diffuse peaks with the shape of 
the 8 function modulated by a factor sin 2 xA are left 
out of the whole DS. As a result at T = 0 the whole 
scattering intensity turns to Bragg reflections without 
any modulation (cos 2 ~A + sin 2 ~A = 1). 

When V is negative (Fig. 3b) the temperature 
dependence of L(~) is similar to that for positive V; 
however, the diffuse peaks do not lie at the Bragg 
points but between them [~t= (Tr/a)(2m+l)]. As a 
result as the temperature decreases a more or less 
uniform DS concentrates at diffuse peaks between 
the Bragg reflections. At T-> 0 the shape of these 
diffuse peaks becomes more and more of the 8-func- 
tion type while the initial Bragg reflections remain 
reduced by the factor cos 2 ~A and do not depend 
upon temperature. 
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II. Chaotization of a t w o - d i m e n s i o n a l  crysta l .  
I s ing  m o d e l  

Let us consider the two-dimensional crystal on the 
xy plane as a square lattice of atoms with translations 
ax = ay = a. Let us assume the simplest way of chaotiz- 
ation: each atom has a double well as in Fig. l (b)  
along the x axis and a single well along the y axis. 
Then the Ising operators o-,~,,~ with eigenvalues +1 
and -1  should be ascribed to each site of the lattice 
but the site numeration is now twofold: nx is the 
number o f ' a  line', and ny is the number o f ' a  column'. 
The displacements of atoms are one-dimensional as 
before: ao-,x,,, and accept the values +A or - A  along 
the x axis. 

Two-dimensional lattice without chaotization 

Similarly to the linear-chain case it is not difficult 
to obtain the following result for scattering intensities: 

I ( ~ ) = 8 ( h - b X ) 8 ( k - b Y ) -  8(2)(~-b), (20) 

where h and k are the components of the scattering 
vector ~, measured in 2rr/a units, and b x and b y are 
the components of reciprocal-lattice vectors. The two- 
dimensional 8 function 8<2)(~-b) should be under- 
stood as the limit Nx, Ny + oo of the corresponding 
Laue function [see (3)] 

s i n 2 ( N x ~ ) s i n 2 ( N  ka~ 
1 Y 2 ]  

NxNy s in2(_~)  s i n 2 ( ~  ) " 

....{=0.8 

1"_2 T 0 o  

--/J.Jl kk",-._JJ.J tkx,-_,/JJ t<',,.- 
0 -~a ~,t 8~ 

(a) 

0 ~ ~ 
(b) 

Fig. 3. Temperature dependence of diffuse scattering for the one- 
dimensional chain with correlation. (a) J> 0, (b) J < 0. 

Chaotization of a two-dimensional lattice without 
correlation 

Any possible distribution of + and - signs over 
the ideal lattice sites, where + denotes the displace- 
ment +A of the corresponding atom along the x axis 
and - denotes the displacement -A,  should now be 
called a configuration. The total number of configur- 
ations is equal to 2N~2N, ' and the statistical weight of 
each is equal to 1/2N~2% . One then obtains: 

1 1 
I ( ~t ) - Nx Ny ~,,, {~} 2 ~ 2 % 

x e x p { - i ~ [ ( n a +  Atr~)-(n'a+ Atr~,)]}. (21) 

The intensity calculation is similar to that in the 
linear chain. We shall not give this at length but note 
that at the first step of the calculation instead of (4) 
one should use the more complicated equality: 

1 = (1 - 6,,x,,;,) (1 - t$,,,,,,;) + &,x,,;(1 - 8,,,,,,;) 

+ (1 - 8,,x.~)8,,~.:+ 8.x,,;8 .... :. (22) 

Then one should take the sums over all tr, x,, separ- 
ately for the four terms in (22). 

Making use of the relations similar to (6) one 
obtains as a result: 

I (x )  = cos 2 hA y. 8(2)(~t- b )+  sin 2 hA. (23) 
b 

In the scalar product x .  & we have xxza x = hA as the 
only non-zero term since the displacements are direc- 
ted only along the x axis. If the direction of the 
displacement is arbitrary then one obtains: 

I (x)  = c o s  2 ~ .  A ~ t~(2)(x - b )  ÷ sin 2 x . A .  (24) 
b 

Chaotization of a two-dimensional lattice with 
correlation 

For the sake of simplicity let us assume the 
'exchange' parameter V responsible for the correla- 
tion of the nearest atoms to be equal in both directions 
x and y: Vx = Vy = V. Then the Ising Hamiltonian is 
written as: 

~ = - V  ~ Ao-,,x,,y(Ao-,,x+l,. +Ao- . .n~+ l  ). (25)  
rlxtly 

Mean-field approximation 

In this approximation the Hamiltonian accepts the 
form: 

~=-zVza2( t r )  • O-,x,y, (26) 
rlxny 

where z = 4 is the number of nearest neighbours. The 
calculations similar to that for the linear chain with 
the help of relations (22) and (6) lead to the ultimate 
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result for the scattering intensity: 

I(~t) = [ 1 - s i n  2 x .  A(1 - t a n h  2 J(tr))] Y~ 8(2)(x- b) 
b 

+ sin 2 x .  A(1 - t a n h  2 J(tr)). (27) 

To this expression should be added the mean-field 
equation (16), where J =  z V A E / K T .  At the critical 
temperature Tc = zVA2/K (i.e. at J = 1) the second- 
order phase transition from the state with (o-) -- 0 into 
the state with (tr)# 0 takes place. 

Thus in accordance with the formula (27) one can 
say that in the mean-field approximation DS is con- 
stant above the critical temperature whereas below 
the critical temperature it gradually decreases to zero 
as temperature decreases while the reducing factor 
of the Bragg reflections which is constant above the 
transition increases to unity as the temperature 
decreases below the transition. 

III. Rigid movable extended objects. Models 

Model of chains 

Let us consider the three-dimensional monoatomic 
crystal with simple cubic structure (a is the lattice 
parameter) consisting of parallel, atomic chains of 
infinite length which are rigid in one direction (z) 
and able to move relative to one another; let them 
be allowed to move only along their own directions 
(i.e. along the z axis) with +A and - A  displacements 
from the equilibrium positions (Ising case, see Fig. 
4a). In the two remaining directions, x and y direc- 
tions, the atoms form the ideal square lattice (the 
projection of such a lattice onto the xy plane is shown 
in Fig. 4b). Fig. 4(b) shows one of the possible states 
(one configuration) of such a crystal where the chains 
shifted by +A or - A  along the z axis are shown by 
+ or - signs. One can easily see that this is the 
two-dimensional problem with Ising chaotization; 
however, Ising operators now describe the positions 
of the chains but not of the atoms. Initially the correla- 
tion will be omitted. Now let X-ray scattering take 
place on a crystal with such chaotization. The problem 
of the I(~) calculation on such a crystal differs from 
the two-dimensional Ising problem described above. 
First, atomic displacements A are directed normally 
to the xy plane; hence cos 2 hA and sin 2 hA in (23) 
should be replaced by cos2/A and sin2/A (hkl are 

F 
/ / / / ~ O_ O+ O_ O+ 

~ J ~ o+ o+ o_ o_ 

/ ~ ~ ~ o+ o_ o_ o+ 

(a) (b) 

Fig. 4. (a) Rigid chains in a three-dimensional crystal and (b) the 
chaotization of the chain displacements. 

the components of the scattering vector x). Secondly, 
we now deal with the three-dimensional crystal and 
calculate the scattering intensity I(x)  distribution in 
the three-dimensional relspace. Therefore, the whole 
expression (23) should be multiplied by a factor 8 ( l -  
bZ). As a result, for the scattering intensity in the 
problem under consideration instead of (23) one 
obtains: 

I(x)  = c o s  2 / / 1  ~ 8(3)(x-b) +sin 2 IA ~ 8°)(I - bZ). 
b b z 

(28) 

Fig. 5 shows I(x) where the Bragg reflections are 
depicted by solid points; the 'size' of a point corre- 
sponds to the intensity of the corresponding Bragg 
peak according to the factor COS 2 IA. The important 
new feature of the model considered now appears: 
DS as a whole consists of infinite (normal to the z 
axis) equidistant 'shining' relplanes the intensity of 
which is modulated by the factor sin2/A while the 
Bragg reflections are reduced by the factor cos 2 lA. 
One can see in Fig. 5 the gradual pumping over of 
Bragg-scattering intensity into diffuse-scattering 
intensity. For the sake of clarity the pumping over is 
exaggerated in Fig. 5 while in reality it varies slowly 
with the varying plane number. The scattering 
intensity equals zero between the planes (saying noth- 
ing about the usual thermal background). It should 
be reiterated that the angular decrease of the form 
factor f (x )  has not been taken into account. It would 
slightly change the distribution of intensity along the 
pattern but the whole pattern would be the same. 

If one were to take into account the exchange 
interaction J between the nearest-neighbour chains 
one would obtain in the mean-field approximation a 
result similar to (27) with the necessary corrections 
mentioned above: 

I(x)  = [ 1 - s i n  2 IA(1 - t a n h  2 J(tr))] ~ 8(3)(~t-- b) 
b 

+sin 2 I d ( 1 - t a n h  2 J(~r)) Y, ~(])(l-bZ). (29) 
b z 

o 1 2 
(a) 

=e 

(c) 

Fig. 5. Three projections of the intensity.distribution of Bragg and 
diffuse scattering in relspace for a crystal with rigid chains. 
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Leaving aside the calculation details let us repro- 
duce some results for other possible cases (without 
correlation). 

(1) Rigid z chains in a three-dimensional crystal 
of simple cubic structure oscillating in a double well 
with arbitrary fixed direction A =  (Ax, Ay, Az) with 
amplitude A = lal: 

l(x) = cos 2 x. a ~ 8(3)(X-- b) 
b 

+ sin 2 x .  A ~ ~ ) ( I -  b~). (30) 
b z 

In the particular case when chains move along their 
own direction DS possesses two peculiar features: 
relplanes are uniform and the central plane passing 
through the relspace origin is absent. 

(2) Rigid z planes in a three-dimensional crystal 
moving in a double well with arbitrary fixed direction: 

I(~¢) = cos 2 ~¢ .A ~ ~(3)(~¢- b) 
b 

+sin 2 x .A Y~ 8~x2y)(x-b), (31) 
bX, b y 

where 

~ ) ( x - b )  = ~c,)(h - b X ) ~ ' ) ( k -  bY). 

In this case the DS has the shape of shining equidis- 
tant relrods parallel to I. In the particular case when 
two-dimensional rigid objects move in their own 
planes DS possesses two peculiar features: relrods 
are uniform and the central relrod is absent. 

(3) Finally, rigid movable objects may be of three 
dimensions, for example, sublattices. In such a case 
DS will have the shape of separate shining points in 
relspace - the diffuse reflections. 

In all of these cases the accounting for correlation 
may be performed in the simplest mean-field approxi- 
mation that will correct all results by a factor 1 -  
tanh 2 J<o-}. A more adequate description of the scat- 
tering intensity (DS in particular) would be obtained 
in the corresponding exact solutions. 

Rigid objects of various dimensions 

Let us survey the results obtained. In the models 
where the chaotization of separate atoms has been 
considered DS had the shape of a smoothly varying 
---sin 2 x .  A continuous background in relspace. In the 
model problems, where the existence of rigid chains 
has been taken for granted and chaotization of such 
chains has been regarded, DS had the shape of con- 
tinuous shining relplanes (uniform or non-uniform). 
The models of rigid-planes chaotization have given 
DS as a family of relrods and finally the chaotization 
of sublattices has led to relpoints (diffuse reflections). 

Thus one may consider the rigid extended 'objects' 
of v = 0, 1, 2, 3 dimensions and the corresponding 
shining reciprocal 'objects' of ~ = 3 - v dimensions: 

the background (/z =3),  the relplanes (/z =2),  the 
relrods (/z = 1) and diffuse reflections (/z = 0). The 
important question about the physical origin of the 
rigid objects will be discussed at length in the follow- 
ing papers and here it should be emphasized that the 
concepts of rigid extended objects developed and the 
diffuse scattering of various dimensions had been 
stated by Guinier (1956); later on the concept of rigid 
chains was elaborated to explain the diffuse picture 
in KNbO3 by Comes, Lambert & Guinier (1970) and 
our theory is based on and appears to be a develop- 
ment of these ideas. Henceforth one will see that for 
the appearance of shining relplanes and the resulting 
diffuse streaks on an X-ray pattern in a mono-Laue 
experiment the existence of strictly rectilinear chains 
is not necessary. They may be of zigzag type, for 
example. The two-dimensional objects need not 
necessarily coincide with the crystal planes, and so on. 

From the experimental point of view less interest 
is paid to zero-dimensional objects since the smoothly 
varying background in relspace generated by them is 
hardly suitable for quantitative analysis owing to the 
very weak intensity at a relpoint (at a fixed point of 
an X-ray pattern). More valuable information on the 
structure and dynamics of a crystal is contained in 
the diffuse reflections generated by the three- 
dimensional objects (sublattices), but first they are 
weak compared with Bragg reflections, and, second, 
they can only be observed in a mono-Laue experiment 
by chance. A special search should be performed to 
reveal such diffuse reflections. Therefore, the one- 
dimensional (chains) and two-dimensional (planes) 
objects generating correspondingly the diffuse streaks 
and points on an X-ray pattern appear to be the most 
useful and valuable objects for investigation. Both 
have already been observed in experiments by several 
authors in various crystals. Our main goals of the 
theory development are as follow: (1) to describe the 
whole geometric picture of DS observed in a mono- 
Laue experiment at an arbitrary orientation of a single 
crystal and to predict such a picture for any new 
crystal; (2) to describe the temperature evolution of 
diffuse scattering over the whole temperature region; 
(3) to describe the corresponding structural phase 
transitions owing to chaotization of rigid movable 
objects in such crystals; (4) to explain the physical 
microscopical origin of such rigid objects and their 
chaotization; (5) to predict the behaviour of various 
physical properties and characteristics of the crystal 
under investigation. Papers II-V of this series will be 
devoted to these questions. 

IV. Non-lsing chaotization 

Fig. l(c) and (d) gives the simplest examples of 
non-Ising chaotization of a one-dimensional system. 
The first distinguishing feature of non-Ising chaotiz- 
ation is the number of local minima of ~ shape near 
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to the initial lattice site, being more than one or two. 
Let this number be q and let them be denoted by 
vectors Ai showing the actual positions of an atom 
relative to the lattice site (for a one-dimensional crys- 
tal these magnitudes are merely scalars Ai). Consider 
the case where separate local g-shape minima of the 
multi-well potential are equivalent, i.e. their occupa- 
tion probabilities ca are equal (ca = l / q ) ;  such a 
formal model has already been found in statistical 
physics and partially investigated. It is called the 
q-state Potts' model [see, for example, the review by 
Wu (1982)]. 

The second distinguishing feature of a non-Ising 
model is the non-equivalence of local minima, i.e. the 
occupation probabilities ca are different (wells of 
different depth). Such models are far more compli- 
cated than even the Potts' model and had not been 
investigated practically. The scattering problem in 
such models had never been considered. Let us sketch 
the approach to such a problem in non-Ising models. 
Consider some examples of intensity calculations. 

Occupation operators 

Let us assume that the atomic potential has a multi- 
well shape as in Fig. l(c) or (d). Let us introduce 
the operators P,a at each local minimum with eigen- 
values 0 and 1. The total number of all possible 
configurations of an N-atomic chain is equal to qN 
and our task is to calculate the average scattering 
intensity I(~)  on the ensemble of all configurations. 
Such an averaging procedure will be denoted by a 
bar above the corresponding expressions. 

Intensity calculation 

In the absence of correlation 

I(x) 
= E E e x p [ - i x a ( n - n ' ) ] e x p [ - i x ( A - A ' ) ] P , , a P  ,,'a' 

nn' a a '  

= ~ e x p [ - i ~ a ( n - n ' ) ]  
rln' 

x E exp [ - i ~ ( A  - a')]p.aP,,,a,, (32) 
a a '  

where the sums ~aa' run over all q states of each site. 
Once again making use of a relation similar to (4) 
one obtains: 

P,,aP,,'a' = p.ap.,a,[(1 - 8.,,,)(1 - 8aa,) 

+ &,n,(1 - 8aa,) + (1 - &,.,) 8aa, + 8,,.,Saa,], 

(33) 

where the sum in (32) should be taken separately for 
all four terms in (33). 

First term: n # n', zl # A'. The statistical indepen- 
dence of the atomic displacements in different sites 

gives: 

P,,aP,'a'(1 - 8,,,,,)(1 - 8aa,) = cacw(1 - 8,,,,,)(1 - &~A,). 
(34) 

Second term: n = n'. In one and the same site there 
is no different displacement and thus: 

p,,ap,,,a,B,,,,,( 1 - ~Aa') = 0. (35) 

Third term: n # n', A = A': 

pnap.,a,(1 - ~n.,) ~aa, = c2(1 - ~,n,) ~a,,,. (36) 

Fourth term: n = n', A = A'. In such a case P,,aP,,'w = 
2 P,a and as long as the occupation operators possess 

the properties of projection operators p 2 = p ,  so: 

p,,ap,,,a,8,,,,,SAa, = 2 P.aS,, 'Saa' = caS,,,,,Saa,. (37) 

Let us return to the calculation of intensity (32) per 
atom 

x 1 ~  caca, exp [ - i x ( A  - A')] 

i 

x ( 1 -  6aa,)+~ c~] + 1. (38) 

Calculation of the second bracket gives: 

caca, exp  [ - i x (  A - A')] 
JA'  

= ~" aa' cacw [ 1 - 2  sin2 ~ (A  - A') ] 2 

= ca - 2 Y ,  caca 
a a '  2 

= 1 - 2 Y. caca, sin 2 ~(A - A') (39) 
a a '  2 

The final expression for intensity has the form: 

I(~)  = ~-~ 8 0 ) ( ~ - b )  
b 

,,(a-a')] 
x 1 - 2  aa,E caca, sin 2 2 J 

+2  E caca, sin 2 x ( a - a ' )  (40) 
aa' 2 

The first term in (40) describes the Bragg reflections 
reduced by the chaotization and the second term - 
the diffuse scattering. Again one can see that as far 
as the chaotization of just zero-dimensional objects 
(atoms) has been considered so DS was obtained in 
the shape of a modulated continuous background. If 
the one-dimensional objects (chains) were considered 
in a three-dimensional crystal the result would be 
analogous but in the Bragg term the 8 function would 
be three-dimensional and in the DS term again the 
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one-dimensional  8 function would appear  corre- 
sponding to shining relplanes and so on. It should 
be noted that  in such a calculation (the chains in the 
z direction) the sum in I (x )  has the form Y-,x, , > ' a a '  • ,v 
and instead of  (33) a more comphcated  equahty  ~as 
to be used: 

P,,x,,raP,,>;a ' =  P,,=,,,aP,,;,,,;a'[ (1 - &,~,,;,)+ 8,,x,,x] 

x [ ( 1 - 3,,~.;,) + 8,,..;][ (1 - 3aa,) + 3aa,]. 

(41) 

Using (41) and the procedure  described above one 
obtains for scattering intensity a result similar to (40)' 

I ( ~ ) = [ 1 - 2  ~" c a c a ' s i n 2 ~ ( A - A ' ) ] ~  2 

+2~-"~ caca, s i n 2 ~ ( A - A ' ) Y  ". 6(1)(l-b z) (42) 
aa' 2 b ~ 

and the analogous result for the case of  rigid planes 
differing from (40) only by the two-dimensional  6 
function in the DS term. 

The results obtained yield the natural  limit crossing 
to the Ising models.  For  example,  let us consider (40) 
in detail. The part icular  case when q = 2 and two 
minima are equivalent  ca = c2 = ½ coincides with the 
Ising model.  Then A ' = - A  or A - A '  = 2 A  and 
instead of  (40) one can obtain: 

I (~ )  = [ 1 - ½ ( 0 +  sin 2 xA + s i n  2 ~A +0) ]  ~ 8 (1 ) (~ -b )  
b 

+ ½(0 + sin 2 ~A + sin 2 xA + 0) 

= (1 - s i n  2 ~A)  ~ 3(1)(~ - b )  + s i n  2 ~A, 
b 

which coincides with (10) and thus proves our state- 
ment. The similar crossing may be retraced from (42) 
to (28) and so on. 

The continuous chaotization 

Let us now make the number  of  local minima near  
to a lattice site infinity. Then for the occupat ion 
probabil i ty  of  an a tom one would obtain the 
enveloped curve c(x) of all local minima (Fig. l e), 
the integral of  which from - a / 2  to +a/2 has to be 
equal to unity. This is a closer approximat ion  to the 
real atomic potential  well (not necessarily sym- 
metrical). 

Then instead of  (40) one can write: 
a/2 

- a / 2  

dx d x ' ]  

a/2 

x ~  3 ( ' ) ( x - b ) + 2  I f  c(x)c(x') 
- a / 2  

x sin 2 ~(x  - x')  dx dx' .  
2 

(43) 

It is proper  to change the variables x -  x'--> x, x'--> y. 
Taking into account  the fact that 

a/2 

f c ( y ) d y = l  

- a / 2  

one obtains: 

a12 

f c ( x ) s i n 2 7 d x ] ~ 8 ( ' ) ( ~ t - b )  

0 

a/2 

I + c(x)sin2--~-dx. (44) 

o 

I(~¢) = [ 1 -  

From the physical  point  of  view it is obvious that  
c(x) - . -exp[- f lU(x)] ,  where U(x) is the profile of 
the potential  energy (harmonic  or anharmonic)  near  
to the lattice site. 

It should be noted that  the last model of  cont inuous 
chaotizat ion is the natural  way to calculate the 
Debye-Wal le r  factor for any anharmonic  potential  
well and also to calculate the corresponding diffuse- 
scattering background.  
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